:::tip
主要记录自己在学习逆向分析之中遇到的常规公开算法的特征,方便快速的复原算法。
:::

算法

MD5

md5这个很常见,基本上以16位和32位的哈希串。通过算法代码我们他有三个主要函数 MD5Init 初始化和 MD5Update 输入加密文本以及哈希的最终生成 MD5Final

对于MD5Init:

1
2
3
4
5
6
7
8
9
void MD5Init(MD5_CTX *context)
{
context->count[0] = 0;
context->count[1] = 0;
context->state[0] = 0x67452301;
context->state[1] = 0xEFCDAB89;
context->state[2] = 0x98BADCFE;
context->state[3] = 0x10325476;

可以很明显的确认到他的几个固定Hex:
0x674523010xEFCDAB890x98BADCFE0x10325476来识别到 MD5Init函数。

然后在执行 MD5Update 的时候它会调用一个子函数 MD5Transform 它里面同样有一个table,里面有大量的固定值,来进行二次判断。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
void MD5Transform(unsigned int state[4],unsigned char block[64])
{
unsigned int a = state[0];
unsigned int b = state[1];
unsigned int c = state[2];
unsigned int d = state[3];
unsigned int x[64];
MD5Decode(x,block,64);
FF(a, b, c, d, x[ 0], 7, 0xd76aa478); /* 1 */
FF(d, a, b, c, x[ 1], 12, 0xe8c7b756); /* 2 */
FF(c, d, a, b, x[ 2], 17, 0x242070db); /* 3 */
FF(b, c, d, a, x[ 3], 22, 0xc1bdceee); /* 4 */
FF(a, b, c, d, x[ 4], 7, 0xf57c0faf); /* 5 */
FF(d, a, b, c, x[ 5], 12, 0x4787c62a); /* 6 */
FF(c, d, a, b, x[ 6], 17, 0xa8304613); /* 7 */
FF(b, c, d, a, x[ 7], 22, 0xfd469501); /* 8 */
FF(a, b, c, d, x[ 8], 7, 0x698098d8); /* 9 */
FF(d, a, b, c, x[ 9], 12, 0x8b44f7af); /* 10 */
FF(c, d, a, b, x[10], 17, 0xffff5bb1); /* 11 */
FF(b, c, d, a, x[11], 22, 0x895cd7be); /* 12 */
FF(a, b, c, d, x[12], 7, 0x6b901122); /* 13 */
FF(d, a, b, c, x[13], 12, 0xfd987193); /* 14 */
FF(c, d, a, b, x[14], 17, 0xa679438e); /* 15 */
FF(b, c, d, a, x[15], 22, 0x49b40821); /* 16 */

/* Round 2 */
GG(a, b, c, d, x[ 1], 5, 0xf61e2562); /* 17 */
GG(d, a, b, c, x[ 6], 9, 0xc040b340); /* 18 */
GG(c, d, a, b, x[11], 14, 0x265e5a51); /* 19 */
GG(b, c, d, a, x[ 0], 20, 0xe9b6c7aa); /* 20 */
GG(a, b, c, d, x[ 5], 5, 0xd62f105d); /* 21 */
GG(d, a, b, c, x[10], 9, 0x2441453); /* 22 */
GG(c, d, a, b, x[15], 14, 0xd8a1e681); /* 23 */
GG(b, c, d, a, x[ 4], 20, 0xe7d3fbc8); /* 24 */
GG(a, b, c, d, x[ 9], 5, 0x21e1cde6); /* 25 */
GG(d, a, b, c, x[14], 9, 0xc33707d6); /* 26 */
GG(c, d, a, b, x[ 3], 14, 0xf4d50d87); /* 27 */
GG(b, c, d, a, x[ 8], 20, 0x455a14ed); /* 28 */
GG(a, b, c, d, x[13], 5, 0xa9e3e905); /* 29 */
GG(d, a, b, c, x[ 2], 9, 0xfcefa3f8); /* 30 */
GG(c, d, a, b, x[ 7], 14, 0x676f02d9); /* 31 */
GG(b, c, d, a, x[12], 20, 0x8d2a4c8a); /* 32 */

/* Round 3 */
HH(a, b, c, d, x[ 5], 4, 0xfffa3942); /* 33 */
HH(d, a, b, c, x[ 8], 11, 0x8771f681); /* 34 */
HH(c, d, a, b, x[11], 16, 0x6d9d6122); /* 35 */
HH(b, c, d, a, x[14], 23, 0xfde5380c); /* 36 */
HH(a, b, c, d, x[ 1], 4, 0xa4beea44); /* 37 */
HH(d, a, b, c, x[ 4], 11, 0x4bdecfa9); /* 38 */
HH(c, d, a, b, x[ 7], 16, 0xf6bb4b60); /* 39 */
HH(b, c, d, a, x[10], 23, 0xbebfbc70); /* 40 */
HH(a, b, c, d, x[13], 4, 0x289b7ec6); /* 41 */
HH(d, a, b, c, x[ 0], 11, 0xeaa127fa); /* 42 */
HH(c, d, a, b, x[ 3], 16, 0xd4ef3085); /* 43 */
HH(b, c, d, a, x[ 6], 23, 0x4881d05); /* 44 */
HH(a, b, c, d, x[ 9], 4, 0xd9d4d039); /* 45 */
HH(d, a, b, c, x[12], 11, 0xe6db99e5); /* 46 */
HH(c, d, a, b, x[15], 16, 0x1fa27cf8); /* 47 */
HH(b, c, d, a, x[ 2], 23, 0xc4ac5665); /* 48 */

/* Round 4 */
II(a, b, c, d, x[ 0], 6, 0xf4292244); /* 49 */
II(d, a, b, c, x[ 7], 10, 0x432aff97); /* 50 */
II(c, d, a, b, x[14], 15, 0xab9423a7); /* 51 */
II(b, c, d, a, x[ 5], 21, 0xfc93a039); /* 52 */
II(a, b, c, d, x[12], 6, 0x655b59c3); /* 53 */
II(d, a, b, c, x[ 3], 10, 0x8f0ccc92); /* 54 */
II(c, d, a, b, x[10], 15, 0xffeff47d); /* 55 */
II(b, c, d, a, x[ 1], 21, 0x85845dd1); /* 56 */
II(a, b, c, d, x[ 8], 6, 0x6fa87e4f); /* 57 */
II(d, a, b, c, x[15], 10, 0xfe2ce6e0); /* 58 */
II(c, d, a, b, x[ 6], 15, 0xa3014314); /* 59 */
II(b, c, d, a, x[13], 21, 0x4e0811a1); /* 60 */
II(a, b, c, d, x[ 4], 6, 0xf7537e82); /* 61 */
II(d, a, b, c, x[11], 10, 0xbd3af235); /* 62 */
II(c, d, a, b, x[ 2], 15, 0x2ad7d2bb); /* 63 */
II(b, c, d, a, x[ 9], 21, 0xeb86d391); /* 64 */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
}

通过两者基本上就能确定MD5这个函数了,加上他的本身执行流程很容易确定。

SM4

对于国密的算法,一开始被我的 IDA Pro 的的算法识别插件识别到了他的 sbox。但是由于插件十分老旧,它标记成了 SMS4,以至于当时根本就没有反应过来。

对于 SM4 他存在两套加密方式,一套是 ecb 模式,此模式有点烂大街了,网上大多数搜 SM4 的时候搜到的是这种实现形式的,然后还有一种比较牢靠的 cbc 模式,简单来看 cbc 加密的时候比 ecb 多了一个 IV ,很容易区分开这两种模式。SM4 是一种分组加密算法,通常它以 16 位切成一组,这个可以当作一个特征,处理数据的时候,是按 16 处理加密的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
/*
* SM4-CBC buffer encryption/decryption
*/
void sm4_crypt_cbc( sm4_context *ctx,
int mode,
int length,
unsigned char iv[16],
unsigned char *input,
unsigned char *output )
{
int i;
unsigned char temp[16];

if( mode == SM4_ENCRYPT )
{
while( length > 0 )
{
for( i = 0; i < 16; i++ )
output[i] = (unsigned char)( input[i] ^ iv[i] );

sm4_one_round( ctx->sk, output, output );
memcpy( iv, output, 16 );

input += 16;
output += 16;
length -= 16;
}
}
else /* SM4_DECRYPT */
{
while( length > 0 )
{
memcpy( temp, input, 16 );
sm4_one_round( ctx->sk, input, output );

for( i = 0; i < 16; i++ )
output[i] = (unsigned char)( output[i] ^ iv[i] );

memcpy( iv, temp, 16 );

input += 16;
output += 16;
length -= 16;
}
}
}

其次,同样插件识别就是靠识别到了这个 sbox 表:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
* Expanded SM4 S-boxes
/* Sbox table: 8bits input convert to 8 bits output*/

static const unsigned char SboxTable[16][16] =
{
{0xd6,0x90,0xe9,0xfe,0xcc,0xe1,0x3d,0xb7,0x16,0xb6,0x14,0xc2,0x28,0xfb,0x2c,0x05},
{0x2b,0x67,0x9a,0x76,0x2a,0xbe,0x04,0xc3,0xaa,0x44,0x13,0x26,0x49,0x86,0x06,0x99},
{0x9c,0x42,0x50,0xf4,0x91,0xef,0x98,0x7a,0x33,0x54,0x0b,0x43,0xed,0xcf,0xac,0x62},
{0xe4,0xb3,0x1c,0xa9,0xc9,0x08,0xe8,0x95,0x80,0xdf,0x94,0xfa,0x75,0x8f,0x3f,0xa6},
{0x47,0x07,0xa7,0xfc,0xf3,0x73,0x17,0xba,0x83,0x59,0x3c,0x19,0xe6,0x85,0x4f,0xa8},
{0x68,0x6b,0x81,0xb2,0x71,0x64,0xda,0x8b,0xf8,0xeb,0x0f,0x4b,0x70,0x56,0x9d,0x35},
{0x1e,0x24,0x0e,0x5e,0x63,0x58,0xd1,0xa2,0x25,0x22,0x7c,0x3b,0x01,0x21,0x78,0x87},
{0xd4,0x00,0x46,0x57,0x9f,0xd3,0x27,0x52,0x4c,0x36,0x02,0xe7,0xa0,0xc4,0xc8,0x9e},
{0xea,0xbf,0x8a,0xd2,0x40,0xc7,0x38,0xb5,0xa3,0xf7,0xf2,0xce,0xf9,0x61,0x15,0xa1},
{0xe0,0xae,0x5d,0xa4,0x9b,0x34,0x1a,0x55,0xad,0x93,0x32,0x30,0xf5,0x8c,0xb1,0xe3},
{0x1d,0xf6,0xe2,0x2e,0x82,0x66,0xca,0x60,0xc0,0x29,0x23,0xab,0x0d,0x53,0x4e,0x6f},
{0xd5,0xdb,0x37,0x45,0xde,0xfd,0x8e,0x2f,0x03,0xff,0x6a,0x72,0x6d,0x6c,0x5b,0x51},
{0x8d,0x1b,0xaf,0x92,0xbb,0xdd,0xbc,0x7f,0x11,0xd9,0x5c,0x41,0x1f,0x10,0x5a,0xd8},
{0x0a,0xc1,0x31,0x88,0xa5,0xcd,0x7b,0xbd,0x2d,0x74,0xd0,0x12,0xb8,0xe5,0xb4,0xb0},
{0x89,0x69,0x97,0x4a,0x0c,0x96,0x77,0x7e,0x65,0xb9,0xf1,0x09,0xc5,0x6e,0xc6,0x84},
{0x18,0xf0,0x7d,0xec,0x3a,0xdc,0x4d,0x20,0x79,0xee,0x5f,0x3e,0xd7,0xcb,0x39,0x48}
};

大量的特征随之就产生了。

然后他还有一个表,姑且称之为固定表吧。

1
2
3
4
5
6
7
8
9
10
11
12
/* fixed parameter */
static const unsigned long CK[32] =
{
0x00070e15,0x1c232a31,0x383f464d,0x545b6269,
0x70777e85,0x8c939aa1,0xa8afb6bd,0xc4cbd2d9,
0xe0e7eef5,0xfc030a11,0x181f262d,0x343b4249,
0x50575e65,0x6c737a81,0x888f969d,0xa4abb2b9,
0xc0c7ced5,0xdce3eaf1,0xf8ff060d,0x141b2229,
0x30373e45,0x4c535a61,0x686f767d,0x848b9299,
0xa0a7aeb5,0xbcc3cad1,0xd8dfe6ed,0xf4fb0209,
0x10171e25,0x2c333a41,0x484f565d,0x646b7279
};

姑且记录到这里,等有了其他算法在继续记录。同时为了方便实战中使用打算做一下自己的findcrypt-yara 识别库。

参考资料:

  1. windard/sm4d写的国密算法解析
  2. C语言实现md5函数